
www.manaraa.com

Reactive Robot Navigation Utilizing
Nonlinear Control

immediate
�

Abstract In this paper, we propose a computationally
efficient heuristic solution to choosing a path around
obstacles in the face of limited sensor information.
Specifically, we propose a navigation algorithm for a
mobile robot that reaches a measured target position
while avoiding obstacles, making decisions in real-time
(without stopping) and relying strictly on information
obtained from limited and noisy robot-mounted sensors
to determine the location and severity of obstacles.
The solution utilizes fuzzy processing to encode the
environment - the fuzzy encoding is used both in
deciding on an intermediate target direction and in
a collision-avoidance strategy. A closed-loop nonlinear
feedback control provides a smooth motion with stability
guarantees. Simulation results in a corridor environment
demonstrate expected collision-free trajectories.

Keywords Mobile Robot Navigation, Reactive Control,
BEAM Robotics, Lyapunov Backstepping Control

1. Introduction

Unlike classic mathematical methods, heuristic algorithms
often produce practical - although sub-optimal - solutions
to mobile robot navigation problems in real-time.
Masehian and Sedighizadeh’s survey [1] shows that the
proportion of heuristic methods to classic methods has

been approaching unity for the past 30 years. However,
even heuristic methods often rely on accurate sensor
information and a large amount of computational power.

Different architectures for reactive mobile-robot
navigation include fuzzy-logic, feedback control and
BEAM (for Biology, Electronics, Aesthetics and Mechanics)
strategies. The navigation system proposed here combines
these three methods in a novel fashion, causing the robot
to go around obstacles in a way that appears insect-like; it
reacts to obstacles that it encounters along the way to the
target rather than planning a global or optimal path. The
fuzzy encoding of the environment includes the target,
currently-faced obstacles and recently-passed obstacles.
From this information, a fuzzy inference produces an
intermediate target position. The closed-loop nonlinear
feedback control, with a short-term memory element,
uses the error between the current position and an
intermediate target to produce commanded translational
and rotational velocities. A BEAM-style control signal,
referred to here as a ’virtual force’, gets added directly to
the commanded velocities as if it were a disturbance in the
feedback loop. In this case, it is introduced as a deliberate
and helpful disturbance. The virtual control serves as a
collision-avoidance system to ensure that the robot does
not brush against obstacles.

Lei Ting, Chris J.B. Macnab and Sebastian Magierowski:
Reactive Robot Navigation Utilizing Nonlinear Control

1

ARTICLE

Int J Adv Robot Syst, 2014, 11:100 | doi: 10.5772/58705

1 University of Calgary, Calgary, Canada
2 York University, Toronto, Canada
* Corresponding author E-mail: cmacnab@ucalgary.ca

Received 30 Aug 2013; Accepted 22 Apr 2014

DOI: 10.5772/58705

∂ 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Lei Ting1, Chris J.B. Macnab1,* and Sebastian Magierowski2

Reactive Robot Navigation
Utilizing Nonlinear Control
Regular Paper

International Journal of Advanced Robotic Systems

www.manaraa.com

Figure 1. Navigation strategy

The very simplest control strategy stems from the concept
of BEAM. Many hobbyists and students have followed
this approach when building for fun or for robot games
competitions, and the basic principles are outlined in [2].
Under this design approach, one connects the sensors
directly to the actuators, which bypasses the need for
processing the information and results in purely reactive
motions. This strategy has proved very robust and reliable
for simple movements, especially for avoiding imminent
collisions. However, one normally desires more efficient
and directed motions in real applications.

In order to avoid obstacles in an efficient - although
sub-optimal - manner while seeking a target, a reactive
control strategy appears to make the most sense. A
reactive strategy does not rely on formal path planning
algorithms requiring precise and/or global knowledge
of the environment. Many researchers have designed
fuzzy-rule bases for choosing paths based on obstacle
distance/direction, which is a an approach that typically
results in reasonable real-time decisions; for a recent
example, see [3] where additional physical constraints
are imposed on the fuzzy rules to reduce reliance on
heuristics. An automatic algorithm modifies the fuzzy
rules in real-time in response to the environment in [4]. A
neural-network structure encodes the fuzzy rules in order
to provide adaptation (or learning) for static obstacles in
[5] and dynamic obstacles in [6]. In order to achieve
more complex navigation behaviours, maze-navigation
and/or extraction from dead-ends, the fuzzy rules must
be augmented with a memory of the environment,
for example [7]. However, heuristic fuzzy techniques
lack mathematical guarantees of success and/or stability,
which is an important issue to address in this field of
research.

The theory of nonlinear feedback control holds the
potential for mathematical guarantees in navigation
problems in the face of uncertainty. Usually, nonlinear
feedback controls simply track a pre-determined path or
trajectory, as in [8],[9],[10] and [11]. The method of
artificial potential fields is similar to feedback control
and decides the path itself; modifications allow the
use of only local sensor information to implement this

popular technique in [12]. Given good knowledge of the
environment and a series of pre-designed local feedback
controls that funnel into each other in a hybrid control
approach called ’sequential composition’, it is possible to
successfully steer the robot around obstacles, as in [13]
and [14]. This is also the case for the similar-in-concept
vector-field method, such as in [15] and [16]. Using only
local sensor information, a Lyapunov-stable control for
unicycle navigation in [17] uses a heuristic algorithm to
switch between stable target-tracking and stable obstacle
avoidance feedback modes. Similarly, a border-following
feedback control law allows general obstacle avoidance,
with straight movements towards the target otherwise, as
in [18]. In [19], a direct connection between the output and
control signal achieves BEAM-style obstacle avoidance,
while a linear-filter memory element used inside a
Lyapunov-stable backstepping scheme provides smooth,
rounded motions around obstacles while guaranteeing
target-reaching in the absence of obstacles.

Our work follows on from that proposed in [19] due
its simplicity, mathematical stability analysis, robust
characteristics in the face of sensor noise, and reliability
in avoiding collisions with obstacles. However, we find
the method insufficient to navigate some environments
successfully. Rather than rely on the BEAM-style control
to avoid obstacles, we modify it by adding some small
amount of fuzzy processing and call it a virtual force,
which slows the robot and chooses a logical turning
direction only in the event of imminent collision. Rather
than rely on the memory with Lyapunov backstepping
control - with the target position as the only input - to
choose the direction of travel, we introduce some fuzzy
processing to pick an intermediate target for the nonlinear
control that avoids the closest obstacles. The addition of
these two fuzzy processing levels creates a new, novel
control method which results in improved trajectories
and obstacle avoidance compared to [19]. However, the
scheme is still computationally simple and remains robust
in the face of limited and noisy sensor data. The robot ends
up behaving in an insect-like manner, in the sense that it
simply heads for gaps between obstacles that are close to
the direction of the target. The algorithm allows the robot

Int J Adv Robot Syst, 2014, 11:100 | doi: 10.5772/587052

www.manaraa.com

to head directly towards a sensed obstacle; for example, it
may head towards a further obstacle at the other end of a
gap between two closer obstacles.

Simulation results demonstrate the expected behaviour
of the system in a corridor environment relying on a
noisy, sweeping proximity sensor. We also try the control
of [19] in the simulations, whereby we find that it fails
to navigate this environment. Moreover, simulations
reveal that eliminating any one of the three elements in
the proposed control (fuzzy motion-planning, nonlinear
control or virtual force) results in a failure to navigate this
environment.

2. Overview

The proposed navigation strategy uses fuzzy logic to
decide on both an intermediate target location provided
as a reference input to a closed-loop control as well
as a virtual obstacle force provided as a disturbance
to the closed-loop control (Figure 1). First, a fuzzy
processing operation outputs an intermediate target
position ηi (a vector with a distance and a relative angle)
that creates a logical heading for the robot to follow,
taking into account the target position, measured obstacle
positions and obstacle positions in the immediate past.The
nonlinear control then takes this information and provides
commanded translational and rotational velocities, in
vector u, based on its current position ηu (relative to the
ultimate target) and ηi. Another fuzzy logic operation
decides on the virtual force term, ν f added directly to u,
that reacts quickly to obstacles that might cause a collision
if forward motion continues in the same direction. Note
that the addition of the control-system and virtual force
outputs constitute the real commanded velocities of the
robot. The resulting behaviour consists of:

• heading for a gap between obstacles, or towards an
obstacle that is relatively far away, in a direction that
is close to the target direction,

• making wide turns around obstacles so as to avoid
collisions,

• suddenly slowing and turning if a collision appears
imminent.

2.1. Robot Dynamics

The robot makes angle measurements to the target, θu,
and obstacles relative to its own heading (Figure 2). Note
that the information ends up stored in the fuzzy encoding
using an absolute coordinate system denoted by φ with
φ = 0 aligned to a Cartesian X coordinate. The robot also
measures the distance to the ultimate target, du, and the
vector describing the target position becomes:

ηu =
[
du θu

]T . (1)

The fuzzy logic system will pick a direction that avoids
immediate obstacles (but possibly heading towards a
distant obstacle) by choosing an intermediate target
position defined by:

ηi =
[
di θi

]T . (2)

Figure 2. Coordinates: Dashed lines indicate the scanning
range of the proximity (obstacle) sensor, another sensor provides
a relative target location θu, and fuzzy motion-planning decides
on an intermediate target relative angle θt

The relative coordinate is thus:

η =
[
dt θt

]T , (3)

where dt = di and:

θt = θu − θi. (4)

Since the desired value of η must be [0 0]T , the error
becomes:

e = 0 − (η − N(t)) = −η + N(t) (5)

where N is the sensor noise from measurements of η.
The control system outputs the desired (commanded)
translational velocity v and rotational velocity ω:

u =
[
v ω

]T . (6)

The final commanded velocities include the virtual force
term ν f , directly added to the control signal:

ν = u + ν f . (7)

We assume that the internal motor controllers achieve
the velocities in ν in sufficient time such that the errors
between the commanded and actual velocities remain
insignificant; they are ignored in the navigation/control
scheme developed here.Thus, in the computer simulations
the only dynamics consist of:

η̇ = T(η)ν, (8)

where T(ν) =

[
− cos(θt) 0

sin(θt)
dt

1

]
.

Lei Ting, Chris J.B. Macnab and Sebastian Magierowski:
Reactive Robot Navigation Utilizing Nonlinear Control

3

www.manaraa.com

2.2. Nonlinear Control

In the nonlinear control strategy, we first define a linear
filter memory element that has error for the input. The
key to achieving smooth motions is in designing a desired
error that will cause the filter states to gradually go to zero.
This is done with a Lyapunov backstepping procedure
where the desired error is a virtual control in the first step
of backstepping. A second step of backstepping results in
the design of the velocities (the controls) to move the error
towards its virtual control desired value.

2.2.1. Linear filter memory element

In order to reject noise and to have the robot move in a
wide, rounded path, we use a linear time-invariant low
pass filter to deal with the state errors e as an analogue
memory element. Using standard state space-form for the
filter gives:

ζ̇(t) = Aζ(t) + Be(t) (9)
where the vector ζ contains the states of the filter, with the
first state being the output y = ζ1. The control achieves
smooth and wide trajectories by trying to reduce filter
states ζ to zero as opposed to trying to reduce e(t) directly.

2.2.2. Lyapunov backstepping, step 1

Since the state equations appear in strict-feedback form:

ζ̇(t) = Aζ(t) + B[−η(t) + N(t)], (10)

η̇(t) = T(η)u, (11)

the Lyapunov backstepping technique provides a suitable
nonlinear control strategy. The first step of backstepping
uses the positive-definite function:

V1 = ζTPζ, (12)

where V1 is a scalar-valued function and P is a symmetric
positive definite matrix which satisfies ATP + PA =
−Q where Q is a positive-definite matrix. Taking the
time-derivative results in:

V̇1 = −ζTQζ + 2ζTPB(−η + N). (13)

The backstepping error is:

z = η − ηd, (14)

where ηd is the virtual control, a desired value of η. Thus:

V̇1 = −ζTQζ + 2ζTPB(−z − ηd + N), (15)

leads to a choice of virtual control:

ηd = BTPK1ζ + Rtanh(SBTPζ), (16)

where K1, R and S are all diagonal matrices with positive
constant terms on the diagonals (note PT = P). The
function tanh() ∈ R2 performs an element-by-element
hyperbolic tangent operation and provides robustness to
noise when choosing Ri,i > |Ni|max for i = 1, 2. Positive
constants in S determine the steepness of the hyperbolic
tangent, used in place of a discontinuous robust control
so that the signal may be differentiated. Therefore, (15)
becomes:

V̇1 =− ζTQζ − 2ζTPBBTPK1ζ − 2ζTPBz

+ 2ζTPB
[
−Rtanh(SBTPζ) + N

]
. (17)

2.2.3. Lyapunov backstepping, step 2

In the second step of backstepping, the control Lyapunov
function becomes:

V = V1 + zTz. (18)

Differentiating (18) with respect to time gives:

V̇ =V̇1 + 2zT ż (19)

=V̇1 + 2zT(η̇ − η̇d) (20)

=V̇1 + 2zT(T(η)u − η̇d) (21)

=− ζTQζ − 2ζTPBBTPK1ζ − 2ζTPBz+

2ζTPB
[
−Rtanh(SBTPζ) + N

]
+

2zT(T(η)u − η̇d). (22)

A nonlinear control that would ensure a negative-definite
V̇ under noise-free conditions is:

u =

[
v
ω

]
= T(η)−1(BTPζ + η̇d − K2z), (23)

where K2 has positive constant control gains on the
diagonals. Note that η̇d must be calculated analytically:

η̇d =
∂ηd
∂ζ

ζ̇ (24)

=g(K1BTP + RSBTP[1 − tanh2(SBTPζ)]g)ζ̇. (25)

Substituting (23) into (22), the derivative of the control
Lyapunov function becomes:

V̇ =− ζTQζ − 2K1ζ
TPBBTPK1ζ

2ζTPB[−Rtanh(SBTPζ) + N]− 2zTK2z. (26)

To analyse stability, first bind the time derivative:

V̇ ≤ −λmin(Q)||ζ||2 − 2λmin(K2)||z||2

+2||ζTPB||[−‖Rtanh(SBTPζ)||+ ‖N‖], (27)

where λmin() denotes the minimum eigenvalues of the
symmetric matrices. Thus, V̇ < 0 when:

|ζi| >
tanh−1(Ni/Ri,i)

(SBTP)i
for both i = 1, 2, (28)

and by standard arguments all signals are uniformly
ultimately bounded. When there is no noise, N(t) = 0,
the time derivative is negative definite and the origin is
asymptotically stable (ζ → 0 as t → ∞).

2.3. Fuzzy Environment Encoding

The fuzzy encoding of the environment utilizes an
absolute polar coordinate system, requiring conversion of
the relative angle and distance measurements from the
sensors. The proximity sensor outputs (after coordinate
transformation) M equally-spaced angles φi, i = 1 . . . M
in the current sweeping arc of the sensor between φmin(t)
and φmax(t), each with a distance reading di(φi) (or
equivalently ηi = [di φi]

T). We provide the fuzzy encoding
system with a normalized distance d̄i = di/dmax, where
dmax is the maximum sensor range, interpreting each d̄i as

Int J Adv Robot Syst, 2014, 11:100 | doi: 10.5772/587054

www.manaraa.com

Figure 3. Inner structure of the control system: first is a linear filter used as memory, followed by nonlinear backstepping control

a fuzzy truth-value of FAR="The obstacle is far". When
no obstacle is detected at φi, then d̄i = 1. Obtaining
a continuous, filtered output defining FAR for all angles
between 0 and 360◦, we encode the information using
m weighted Gaussian fuzzy membership functions of the
form:

Γj(φi) = exp((−φi − cj)
2/σ2) for j = 1 . . . m (29)

where σ is a positive constant. The centres are evenly
distributed with cj = 360j/m. Expressing the truth-value
of "The obstacle is far" as a function of an input φi, we
write:

FAR =
m

∑
j=1

wjΓj(φi). (30)

The algorithm continuously updates, in real-time, each
weighting wj by sweeping φ from 0 to 360◦ in M steps, and
at each step applying the update wj = wj + ∆wj where:

∆wj =

{
β(d̄i − FAR) if φmin(t) < φi < φmax(t),
−γwj otherwise,

(31)

and where β is a positive learning rate and γ is a
positive forgetting factor. Inside the sensor range, the
Gaussian functions serve to filter the proximity-sensor
data. Obstacles previously in sensor range remain in
memory for some time in order that they can be taken into
account in the motion planning algorithm. Once enough
time has passed, these disappear from the memory such
that γ should depend upon the speed of the robot.

The fuzzy encoding of the target heading utilizes a
Gaussian function, with a value of 1 where the sensors
locate the target at a given moment and a value
approaching 0 at ±360◦.

2.4. Decision on the Intermediate Target

The choice of desired heading depends, first, on the peaks
(maxima) of the fuzzy obstacle encoding, FAR, being
identified. The peaks then represent possible headings
for the robot, i.e., the angular component of possible
intermediate targets. A value greater than 1 at the peak
(FAR > 1) means that no obstacle is within sensor range
in that direction, while FAR < 1 indicates the relative
distance to the obstacle in that direction. FAR = 0 would
imply contact with the obstacle. Note that even though all
values less than 1 represent possible obstacles, the choice
of heading does not directly take obstacles into account
(although these obstacles will be used in producing virtual

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Start

Target

Figure 4. Cartesian path and robot orientation for 19 seconds.
The red circles indicate current and past obstacle-sensor readings
(the sensor range can be inferred.

forces). Possible headings might be in the same direction
as obstacles but directed towards an obstacle relatively
far away compared to other obstacles. The choice of
intermediate target direction utilizes the fuzzy rule:

• If the possible heading is CLOSE to the target direction
AND an obstacle in that direction is FAR, then in it is
DESIRED

which is computed at the kth peak of FAR as:

DESIREDk = |φk − φtarget| × FAR(φk). (32)

The new desired heading becomes the one with the largest
value of DESIRED. Note that the intermediate target
depends upon time for both the angle and the distance.
The angle changes continuously with the robot’s motion
as obstacles are perceived at different angles, and the angle
may change discontinuously at any time if a different peak
moves closer to the target. The distance to the intermediate
target simply becomes the maximum sensor range when
no obstacles are detected that way or else a fraction of
the way to the obstacle given an obstacle in that direction.
Specifically, in the simulations, when FAR< 1 in the
direction of the desired heading, the vehicle is commanded
to go 80% of the way to the obstacle.

2.5. Producing Virtual Force

The virtual force term directly augments the commanded
velocities from the control, appearing as a disturbance in

Lei Ting, Chris J.B. Macnab and Sebastian Magierowski:
Reactive Robot Navigation Utilizing Nonlinear Control

5

www.manaraa.com

Figure 5. Encoding and decision-making at t = 19 - made when
the robot heading is φ = 90◦

the feedback control loop. In this way, the robot reacts
directly to an impending obstacle analogous to the way in
which BEAM strategies manoeuvre The fuzzy encoding of
the environment provides a convenient way to instantly
decide whether the robot should move left or right, and by
how much, in order to avoid the obstacle. It also decides
how much it should slow down. The fuzzy rules for
producing the virtual force in the direction are made by
looking at the value of FAR. The algorithm looks to the left
and right of the current heading in FAR and identifies the
nearest obstacle (where FAR< 1) to both the left and the
right. The fuzzy rule base is:

1. If an obstacle is NEAR, then the translational velocity
moves SLOWER,

2. If an obstacle is to the LEFT AND NEAR, then the
angular velocity moves NEGATIVE,

3. If an obstacle is to the RIGHT AND NEAR, then the
angular velocity moves POSITIVE,

where:

NEAR =

{
1 − FAR if FAR < 1
0 otherwise

(33)

The fuzzy logic utilizes constants s and c to determine
SLOWER, NEGATIVE and POSITIVE, calculated by:

ν f =

[
∆v
∆ω

]
=

[
−s 0 0
0 −c c

]

NEAR
|φh − φleft| × NEAR
|φh − φright| × NEAR

 (34)

where φh is the current heading and φleft, φright are the
closest angles, in positive and negative angle directions,
respectively, where FAR< 1.

3. Simulation Results

In the simulation, the robot attempts to traverse a 200
cm by 200 cm environment with corridors starting in the
bottom-right corner with the ultimate target at the top left
(Figure 4). The robot knows where the target is in relation
to its heading and has a (noisy) view of obstacles ±90◦

from its heading up to a range of 25 cm in the Cartesian
coordinates. The nominal (maximum) speed of the robot

is 7 cm/s (1 unit/s in the graphs). The thick dashes on
the Cartesian environment plot represent the position and
orientation of the robot at each second.

Noise appears in both the obstacle (proximity) sensor
and target sensor signals. The fuzzy encoding memory
filters the proximity sensor noise while the linear filter
and the robust nonlinear control handle the target sensor
noise. The obstacle sensor model obtains a distance to
the obstacle, dmeasured [at angle φ(t)], which is a random
number for a certain proportion of the time and the correct
reading for other times. Formally:

dmeasured(φ(t)) =

{
dmax(φ(t))(1 − rand(1)) if rand(1) < r
dactual(φ(t)) otherwise,

(35)
where dmax is the maximum sensor range and function
rand(1) produces a random number between 0 and 1, and
where a positive constant r between 0 and 1 determines the
noise level. For the simulations, we use a nominal value
of r = 0.2. The target sensor output displays significant
noise, giving angle readings within ±40◦ of the real target
angle:

θu,measured = θu,actual + 80 · [0.5− rand(1)] [deg]. (36)

We assume that the maximum orientation error is known
and use Nmax = 40◦ in the robust control, choosing the
following parameters:

Q = diag(1, 1),

K1 = diag(0.65, 5), K2 = diag(0.65, 5),

R = diag(0.1, 50), S = diag(1, 1).

Note that as the noise appears in the angle measurement
only, it is only the second diagonal element of R that
provides robustness to noise. In our work, we found
c = 500 deg/s and s = 2 m/s to be suitable values in
(34). For the linear filter memory, we use a simple low pass
filter:

ζ1(s)
e(s)

=
ω f

s2 + 2ζ f ω f s + ω2
f

(37)

with ω f = 1.6 Hz and ζ f = 0.7.

The robot starts out at an initial heading of 0◦, directly
facing the right-hand wall and facing away from the target.
For the first two seconds, the robot turns back and forth
as it attempts to find an obstacle-free heading (Figure 4
bottom right). Inspecting the simulation 19 seconds after
the start (Figure 5) reveals typical robot decision-making
during the manoeuvre. At this point in time, the robot
faces 90◦ in absolute coordinates (Figure 5 bottom graph,
green line), while the ultimate target appears at 155◦

absolute angle (Figure 5 top graph), thus making the
relative target heading (error) 65◦. The range-finder sensor
sweeps 90◦ to either side of the heading, 0◦ to 180◦

in absolute coordinates, with noise clearly visible in the
sensor readings (Figure 5 middle graph).

At 19 seconds, the robot also senses the wall directly
ahead of it and makes a decision to put the intermediate
target at 140◦ (Figure 5 bottom graph, red line), thus
making a left turn of +50◦ from the current heading.

Int J Adv Robot Syst, 2014, 11:100 | doi: 10.5772/587056

www.manaraa.com

(a) 2nd simulation: Cartesian path (b) 2nd simulation: contributions of control and virtual force

(c) 3rd simulation: Cartesian path (d) 3rd simulation: contributions of control and virtual force

(e) 4th simulation: Cartesian path (f) 4th simulation: contributions of control and virtual force

Figure 6. Complete simulations

Even though the robot sees an obstacle-free direction to its
right between 85◦ to 35◦ in absolute coordinates (Figure
5 bottom graph, solid curve), it chooses a heading to its
left since the obstacle remains relatively far away and this
heading appears closer to the ultimate target position.

In another simulation, the random noise affects
decision-making and results in a slightly different
path (Figure 6a). However, at approximately the same
point in space where the previous simulation ended, it
makes the same decision - in this case, to turn left.

Lei Ting, Chris J.B. Macnab and Sebastian Magierowski:
Reactive Robot Navigation Utilizing Nonlinear Control

7

www.manaraa.com

Tracking the commanded velocities from the
motion-planning and the velocities from the virtual
force term (Figure 6b) reveals that at the 17 second mark,
when faced with a similar decision as in Figure 4, the
virtual force command for a negative angular velocity (a
right turn) was "overruled" by the motion-planning. The
virtual force slows the robot and tries to direct the robot
to the obstacle-free direction (to the right), but the fuzzy
motion planning has a stronger command with a larger
commanded positive angular velocity (to the left), thereby
seeing a possible heading more aligned with the ultimate
target direction.

In a third simulation, when faced with a similar decision,
the robot - this time - moved to the right (Figure 6c).
The effects of random sensor noise on the system have
slightly altered the particular circumstances compared to
the previous occasion. This time, the robot virtual force
term slightly outweighs the fuzzy motion planning at the
19 second mark (Figure 6d) and the robot turns to the right.
After turning, the fuzzy motion-planning identifies a new
possible heading and does not try to turn around. The
virtual force term again interferes in the motion at the 27
second mark, slowing and turning the robot away from
the wall on the right when the motion planning appears to
command a turn towards the wall.

In a fourth simulation, the robot starts at a slightly different
location - to the left - and it ends up taking a completely
different path (Figure 6e). In this simulation, the virtual
force term helps the robot avoid a corner at the 24 second
mark (Figure 6f). It causes the robot to turn to the right
to avoid the corner, even though the motion planning
commands a left turn. In a real robot, this type of
behaviour should eliminate the chance that the machine
would try to move too close to a corner and thus make
contact with the extrusion due to the robot’s width.

Sim. Min. Distance (cm) Time (s) Min. Curvature (cm)
2nd 5.4 43 4.3
3rd 4.2 45 6.4
4th 4.4 38 5.3

Table 1. Summary of results

In all cases, the nonlinear control provides a smooth
motion except for when the virtual force terms affect the
system and provide quick responses. Table 1 summarizes
the results in terms of the minimum distance to a wall, the
total time and the minimum radius of the curvature of the
trajectory. Note that the nonlinear control provides most
of the changes in heading; for example, as seen in Figure
6f, between nine and 13 seconds. Here, the intermediate
target position does not change significantly, remaining
at approximately 140◦, yet the nonlinear control causes a
smooth, rounded right-turn around the corner to the right
(Figure 6e first corner), with no input from the virtual force
term needed.

To show the necessity of the each component in each of the
controls, we test three different alternative methods:

1. Using the same virtual force and backstepping control,
but no motion planning - only aiming for the ultimate

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Start

Target

Start

Target

Start

Target

Figure 7. Other controls: Green (on left) Control 1, Red (crashes
into wall) Control 2, Black (on right) Control 3

target which reflects the control proposed in [19] (green
dash, nearly hitting wall on left, Figure 7),

2. Using the same motion planning and
memory/backstepping control, but without any
virtual force term (red dash, hitting wall, Figure 7),

3. Using the same motion planning and virtual force, but
without memory/backstepping control - instead using
u = T−1(η)(−e) (black dash, nearly hitting wall on
right, Figure 7.)

Although the virtual force term keeps the system from
actually touching the wall in Controls 1 and 3, the robot
does come very close and ends up having to reverse
direction. The previous method proposed in the literature
- Control 1, which uses just the ultimate target without
planning any intermediate targets - relies too heavily
on the BEAM-like virtual force to make an effective
navigation strategy. Control 2, without virtual force,
ends up driving directly into a wall. Control 3, without
backstepping, does not give the corner enough room to get
by safely.

In order to test the necessity of the robust virtual control
term [with tanh()], another control, Control 4, eliminates
the robust term (as the only change):

ηd = K1BTPζ. (38)

This affects only the angle-control in the simulation, since
the robust term accounts only for noisy θt (not noise-free
dt). The results show that the robot is easily confused
by obstacles and cannot always find the obstacle-free path
(Figure 8 top right), and also that it tends to wander back
and forth in its movements when it should be following a
nearly-straight line in a long corridor.

Finally, we test the robustness to noise by varying the
noise-level parameter r from (35). The simulation was
attempted eight times at each level of r, and r was changed
by 0.05 each time. The simulations had 100% success rate,
as defined in terms of reaching the target without hitting a
wall, when using a noise level below r < 0.5. The results
appear in Table 2.

Int J Adv Robot Syst, 2014, 11:100 | doi: 10.5772/587058

www.manaraa.com

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Start

Target

Figure 8. Control without tanh() as the robust control term
(Control 4)

r <0.5 0.5 0.55 >0.55
Success rate 100% 75% 25% 0%

Table 2. Robustness to noise

4. Conclusion

This paper proposes a reactive-navigation strategy
for a mobile robot, suitable for implementation on
a robot with limited computational power. The
strategy relies on knowledge of the ultimate target
location and local knowledge of obstacles provided by
a sweeping, forward-looking proximity sensor. A fuzzy
motion-planning algorithm plans an intermediate target
between obstacles for the control system to track. A
Gaussian fuzzy-encoding of the environment serves to
filter sensor noise and provide a basis for choosing a
heading. A nonlinear Lyapunov backstepping control
system with a linear filter element provides robustness
to noise in the control system itself, resulting in a wide
path around obstacles. A collision avoidance strategy,
implemented with a BEAM-style virtual force term,
directly augments the commanded velocities in order
to react immediately to any impending obstacles - both
slowing and turning in a logical direction.

The advantages over computationally-complex
approaches, include suitability for small mobile robots,
immediate decision-making, continuous motion in a
complex environment, reasonable choices in the face of
environmental uncertainty from limited sensors, smooth
motion in the face of noisy sensors, and immediate
reactions in the face of imminent collisions. Unlike as with
computationally simple BEAM control, the robot follows
a smooth path when possible and can immediately head
for a space between sensed obstacles.

To evaluate the performance of the control system,
computer simulations in a corridor environment were
conducted with noisy sensor data. The results show that
the control system provides robustness to noise and can
successfully give obstacles/walls a wide clearance while
maintaining a reasonable speed. The robot navigates an
unknown static environment (lacking dead-ends, traps

and moving obstacles) while avoiding obstacles/walls and
arriving at the desired location successfully.

5. References

[1] Ellips Masehian and Davoud Sedighizadeh. Classic
and heuristic approaches in robot motion planning
- A chronological review. In Proc. World Academy
of Science, Engineering and Technology, pages 101–106,
2007.

[2] M.W. Tilden. The evolution of functional
robo-ecologies. ARS Electronica, 93:195–200, 1993.

[3] I. Baturone and A.A. Gersnoviez. A simple
neuro-fuzzy controller for car-like robot navigation
avoiding obstacles. In IEEE Intl. Fuzzy Systems Conf.,
pages 1–6, London, UK, 2007.

[4] Anmin Zhu and Simon Yang Simon. An Adaptive
Neuro-fuzzy Controller for Robot Navigation, pages
277–307. Springer London, 2009.

[5] K. Al Mutib and E. Mattar. Neuro-fuzzy controlled
autonomous mobile robotics system. In Intl. Conf.
Computer Modelling and Simulation, pages 1–7, 2011.

[6] P. Kondaxakis, H. Baltzakis, and P. Trahanias.
Learning moving objects in a multi-target tracking
scenario for mobile robots that use laser range
measurements. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages
1667 –1672, Oct. 2009.

[7] Meng Wang and James N.K. Liu. Fuzzy logic-based
real-time robot navigation in unknown environment
with dead ends. Robotics and Autonomous, 56:625–643,
2008.

[8] Shuli Sun. Designing approach on trajectory-tracking
control of mobile robot. Robotics and
Computer-Integrated Manufacturing, 21:81–85, 2005.

[9] Jun Ye. Adaptive control of nonlinear pid-based
analog neural networks for a nonholonomic mobile
robot. Neurocomputing, 71:1561–1565, 2008.

[10] Tamoghna Das and Indra Narayan Kar. Design
and implementation of an adaptive fuzzy logic-based
controller for wheeled mobile robots. IEEE Trans.
Contr. Syst. Technol., 14(3):501–510, 2006.

[11] An-Min Zou, Long Cheng, and Min Tan. Adaptive
control of an electrically driven nonholonomic mobile
robot via backstepping and fuzzy approach. IEEE
Trans. Contr. Syst. Technol., 17(4):803–815, 2009.

[12] Yu Yu Lwin, D. Takahashi, and Y. Yamamoto.
Local/global frame switching in sensor-based
outdoor navigation in a wheeled mobile robot.
In Intl. Conf. Modeling, Simulation and Applied
Optimization, pages 1–6, 2011.

[13] David C. Conner, Howie Choset, and Alfred A.
Rizzi. Integrating planning and control for
single-bodied wheeled mobile robots. Autonomous
Robots, 30:243–264, 2011.

[14] Vinutha Kallem, Adam T. Komoroski, and Vijay
Kumar. Sequential composition for navigating a
nonholonomic cart in the presence of obstacles. IEEE
Trans. Rel., 27(6):1152–1159, 2011.

[15] Stephen R. Lindemann, Islam I. Hussein, and
Steven M. LaValle. Real time feedback control for
nonholonomic mobile robots with obstacles. In IEEE
Conf. Dec. Contrl., pages 2406–2411, San Diego, 2006.

Lei Ting, Chris J.B. Macnab and Sebastian Magierowski:
Reactive Robot Navigation Utilizing Nonlinear Control

9

www.manaraa.com

[16] Maciej Michalek and Krzysztof Kozlowski.
Vector-field-orientation feedback control method
for a differentially driven vehicle. IEEE Trans. Contr.
Syst. Technol., 18(1):45–65, 2010.

[17] Jiangmin Chunyu, Zhihua Qu, Eytan Pollak, and
Mark Falash. Reactive target-tracking control with
obstacle avoidance of unicycle-type mobile robots in
a dynamic environment. In Amer. Cntrl. Conf., pages
1190–1195, Baltimore, 2010.

[18] Alexey S. Matveev, Chao Wang, and Andrey V.
Savkin. Real-time navigation of mobile robots in
problems of border patrolling and avoiding collisions
with moving and deforming obstacles. Robotics and
Autonomous Systems, 60:769–788, 2012.

[19] T. Zourntos and N.J. Mathai. A beam-inspired
lyapunov-based strategy for obstacle avoidance and
target-seeking. In American Control Conference, 2007.
ACC ’07, pages 5302 –5309, July 2007.

Int J Adv Robot Syst, 2014, 11:100 | doi: 10.5772/5870510

www.manaraa.com

© 2014. This work is published under
http://creativecommons.org/licenses/by/3.0/(the “License”). Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.

